Saturday, 15 November 2014

Trigonometric Identities


Trigonometric Identities

sin(theta) = a / ccsc(theta) = 1 / sin(theta) = c / a
cos(theta) = b / csec(theta) = 1 / cos(theta) = c / b
tan(theta) = sin(theta) / cos(theta) = a / bcot(theta) = 1/ tan(theta) = b / a

sin(-x) = -sin(x)
csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)
sin^2(x) + cos^2(x) = 1tan^2(x) + 1 = sec^2(x)cot^2(x) + 1 = csc^2(x)
sin(x y) = sin x cos y cos x sin y
cos(x y) = cos x cosy sin x sin y
tan(x y) = (tan x tan y) / (1  tan x tan y)
sin(2x) = 2 sin x cos x
cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x)
tan(2x) = 2 tan(x) / (1 - tan^2(x))
sin^2(x) = 1/2 - 1/2 cos(2x)
cos^2(x) = 1/2 + 1/2 cos(2x)
sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 )
cos x - cos y = -2 sin( (x - y)/2 ) sin( (x + y)/2 )
Trig Table of Common Angles
angle030456090
sin^2(a)0/41/42/43/44/4
cos^2(a)4/43/42/41/40/4
tan^2(a)0/41/32/23/14/0

Given Triangle abc, with angles A,B,C; a is opposite to A, b opposite B, c opposite C:a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)
c^2 = a^2 + b^2 - 2ab cos(C)b^2 = a^2 + c^2 - 2ac cos(B)
a^2 = b^2 + c^2 - 2bc cos(A)
(Law of Cosines)
(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/2] (Law of Tangents)
  
 

Trig Table of Common Angles
angle (degrees) 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360 = 0
angle (radians) PI/6PI/4PI/3PI/22/3PI3/4PI5/6PIPI 7/6PI 5/4PI 4/3PI 3/2PI 5/3PI 7/4PI 11/6PI 2PI = 0
sin(a)(0/4)(1/4)(2/4)(3/4)(4/4)(3/4)(2/4)(1/4)(0/4)-(1/4)-(2/4)-(3/4)-(4/4)-(3/4)-(2/4)-(1/4)(0/4)
COs(a)(4/4)(3/4)(2/4)(1/4)(0/4)-(1/4)-(2/4)-(3/4)-(4/4)-(3/4)-(2/4)-(1/4)(0/4)(1/4)(2/4)(3/4)(4/4)
tan(a)(0/4)(1/3)(2/2)(3/1)(4/0)-(3/1)-(2/2)-(1/3)-(0/4)(1/3)(2/2)(3/1)(4/0)-(3/1)-(2/2)-(1/3)(0/4)
Those with a zero in the denominator are undefined. They are included solely to demonstrate the pattern.
 unit circle picture
  
 

Hyperbolic Trigonometric Identities


Hyperbolic Definitions

sinh(x) = ( e x - e -x )/2csch(x) = 1/sinh(x) = 2/( e x - e -x )
cosh(x) = ( e x + e -x )/2
sech(x) = 1/cosh(x) = 2/( e x + e -x )
tanh(x) = sinh(x)/cosh(x) = ( e x - e -x )/( e x + e -x )
coth(x) = 1/tanh(x) = ( e x + e -x)/( e x - e -x )

cosh 2(x) - sinh 2(x) = 1
tanh 2(x) + sech 2(x) = 1
coth 2(x) - csch 2(x) = 1

Inverse Hyperbolic Definitions

arcsinh(z) = ln( z + sqrt(z 2 + 1) )arccosh(z) = ln( z  sqrt(z 2 - 1) )
arctanh(z) = 1/2 ln( (1+z)/(1-z) )
arccsch(z) = ln( (1+(1+z 2) )/z )
arcsech(z) = ln( (1(1-z 2) )/z )
arccoth(z) = 1/2 ln( (z+1)/(z-1) )

Relations to Trigonometric Functions

sinh(z) = -i sin(iz)csch(z) = i csc(iz)
cosh(z) = cos(iz)
sech(z) = sec(iz)
tanh(z) = -i tan(iz)
coth(z) = i cot(iz)

Trigonometric Graphs

 
 

  
  
  
 
  

  

No comments:

Post a Comment