sin(-x) = -sin(x) csc(-x) = -csc(x) cos(-x) = cos(x) sec(-x) = sec(x) tan(-x) = -tan(x) cot(-x) = -cot(x)
sin(2x) = 2 sin x cos x cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x) tan(2x) = 2 tan(x) / (1 - tan^2(x)) sin^2(x) = 1/2 - 1/2 cos(2x) cos^2(x) = 1/2 + 1/2 cos(2x) sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 ) cos x - cos y = -2 sin( (x - y)/2 ) sin( (x + y)/2 )
Given Triangle abc, with angles A,B,C; a is opposite to A, b opposite B, c opposite C:a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Saturday, 15 November 2014
Trigonometric Identities
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment