3.1.1 Derivative of Constant Function

3.1.2 Derivative of Identity Function
3.1.3 The Sum Rule

3.1.4 The Product Rule

In particular

3.1.5 The Chain Rule
y = f(u), u = g(x), f and g differentiable.
Then

3.1.6 Implicit Differentiation
Suppose the function f(x) is defined by an equation: g(f(x),x)=0, rather than by an explicit formula.
Then g is a function of two variables, x and f.
Thus g may change if f changes and x does not, or if x changes and f does not.
Let the change in g arising from a change, df, in f and none in x be a(f,x)df, and let the change in g from a change, dx, in x and none in f be b(f,x).
The total change in g must vanish since g is a constant, (0), which gives us
a(f,x)df + b (f,x)dx = 0
or

3.1.7 The Quotient Rule

In particular,

3.1.8 The Power Rule

hence,

implies

General Derivative Formulas:
1) ![]() ![]() 2) ![]() 3) ![]() 4) ![]() 5) ![]() 6) ![]() 7) ![]() 8) ![]() 9) ![]() 10) ![]()
Derivative of Logarithm Functions:
11)
![]() 12) ![]() 13) ![]() 14) ![]()
Derivative of Exponential Functions:
15)
![]() 16) ![]() 17) ![]() 18) ![]() 19) ![]()
Derivative of Trigonometric Functions:
20)
![]() 21) ![]() 22) ![]() 23) ![]() 24) ![]() 25) ![]()
Derivative of Hyperbolic Functions:
26)
![]() 27) ![]() 28) ![]() 29) ![]() 30) ![]() 31) ![]()
Derivative of Inverse Trigonometric Functions:
32)
![]() 33) ![]() 34) ![]() 35) ![]() 36) ![]() 37) ![]()
Derivative of Inverse Hyperbolic Functions:
38)
![]() 39) ![]() 40) ![]() 41) ![]() 42) ![]() 43) ![]() |
No comments:
Post a Comment