Saturday 15 November 2014

Complexity

Complexity

Basic Operations

i = sqrt(-1)i 2 = -1
1 / i = -i
i 4k = 1; i (4k+1) = i; i (4k+2) = -1; i (4k+3) = -i (k = integer)
sqrt( i ) = sqrt(1/2)+ sqrt(1/2) i

Complex Definitions of Functions and Operations

(a + bi) + (c + di) = (a+c) + (b + d) i
(a + BI) (c + DI) = ac + adi + bci + bdi 2 = (ac - bd) + (ad +bc) i
1/(a + BI) = a/(a 2 + b 2) - b/(a 2 + b 2) i
(a + BI) / (c + DI) = (ac + BD)/(c 2 + d 2) + (BC - ad)/(c 2 +d 2) i
a2 + b2 = (a + BI) (a - BI)   (sum of squares)
e (i theta) = costheta + i sin theta
n (a + BI) = (COs(b ln n) + i sin(b ln n))n a
if z = r(COs theta+ i sin theta) then z n = r n ( COs ntheta+ i sin ntheta )(DeMoivre's Theorem)
if w = r(COs theta+ i sin theta);n=integer, then there are n complex nth roots (z) of w for k=0,1,..n-1:
z(k) = r (1/n) [ COs( (theta+ 2(PI)k)/n ) + i sin( (theta+ 2(PI)k)/n ) ]
if z = r (COs theta+ i sin theta) then ln(z) = ln r + i theta
sin(a + BI) = sin(a)cosh(b) + COs(a)sinh(b) i
COs(a + BI) = COs(a)cosh(b) - sin(a)sinh(b) i
tan(a + BI) = ( tan(a) + i tanh(b) ) / ( 1 - i tan(a) tanh(b))
= ( sech 2(b)tan(a) + sec 2(a)tanh(b) i ) / (1 + tan 2(a)tanh 2(b))
  
  

No comments:

Post a Comment